Hypercapnia induces injury to alveolar epithelial cells via a nitric oxide-dependent pathway.

نویسندگان

  • J D Lang
  • P Chumley
  • J P Eiserich
  • A Estevez
  • T Bamberg
  • A Adhami
  • J Crow
  • B A Freeman
چکیده

Ventilator strategies allowing for increases in carbon dioxide (CO(2)) tensions (hypercapnia) are being emphasized to ameliorate the consequences of inflammatory-mediated lung injury. Inflammatory responses lead to the generation of reactive species including superoxide (O(2)(-)), nitric oxide (.NO), and their product peroxynitrite (ONOO(-)). The reaction of CO(2) and ONOO(-) can yield the nitrosoperoxocarbonate adduct ONOOCO(2)(-), a more potent nitrating species than ONOO(-). Based on these premises, monolayers of fetal rat alveolar epithelial cells were utilized to investigate whether hypercapnia would modify pathways of.NO production and reactivity that impact pulmonary metabolism and function. Stimulated cells exposed to 15% CO(2) (hypercapnia) revealed a significant increase in.NO production and nitric oxide synthase (NOS) activity. Cell 3-nitrotyrosine content as measured by both HPLC and immunofluorescence staining also increased when exposed to these same conditions. Hypercapnia significantly enhanced cell injury as evidenced by impairment of monolayer barrier function and increased induction of apoptosis. These results were attenuated by the NOS inhibitor N-monomethyl-L-arginine. Our studies reveal that hypercapnia modifies.NO-dependent pathways to amplify cell injury. These results affirm the underlying role of.NO in tissue inflammatory reactions and reveal the impact of hypercapnia on inflammatory reactions and its potential detrimental influences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of nitric oxide synthase expression by lipopolysaccharide is mediated by calcium-dependent PKCα-β1 in alveolar epithelial cells.

Nitric oxide (NO) plays an important role in innate host defense and inflammation. In response to infection, NO is generated by inducible nitric oxide synthase (iNOS), a gene product whose expression is highly modulated by different stimuli, including lipopolysaccharide (LPS) from gram-negative bacteria. We reported recently that LPS from Pseudomonas aeruginosa altered Na⁺ transport in alveolar...

متن کامل

Nitric oxide synthase 2 through an autocrine loop via respiratory epithelial cell-derived mediator.

Respiratory epithelium expresses nitric oxide synthase 2 (NOS2) continuously in vivo; however, mechanisms responsible for its expression are only partially understood. We definitively identify an autocrine mechanism of induction and maintenance of NOS2 in human airway epithelial cells through the synthesis and secretion of a soluble mediator. Short exposure of human airway cells to interferon (...

متن کامل

P-113: Survey of In Vitro Effect of Resveratrol on Nitric Oxide Secretion of Human Endometrial Epithelial Cells

Background: Resveratrol is a natural polyphe- nolic compound, synthesized by plants as a phytoalexin and protects against ultraviolet radiation and fungal infection. Nitric oxide is formed from L-arginine through nitric oxide synthases (NOS), a group of enzymes that structurally resemble cytochrome P-450 reductase. In females, circulating NO is increased during follicle development and decrease...

متن کامل

Soluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells

Objective(s): Hyperuricemia is a risk for cardiovascular and metabolic diseases, but the mechanism is ambiguous. Increased intestinal permeability is correlated with metabolic syndrome risk factors. Intestinal epithelial cells play a pivotal role in maintaining intestinal permeability. Uric acid is directly eliminated into intestinal lumen, however, the mechanism and e...

متن کامل

Inhaled nitric oxide primes lung macrophages to produce reactive oxygen and nitrogen intermediates.

Inhaled nitric oxide is a selective pulmonary vasodilator used for the treatment of pulmonary hypertension. The potential adverse effects of inhaled nitric oxide are unknown and represent the focus of the present studies. Whereas inhalation of nitric oxide (10 to 100 ppm, 5 h) by Balb/c mice had no effect on the number or type of cells recovered from the lung, a dose-related increase in broncho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 279 5  شماره 

صفحات  -

تاریخ انتشار 2000